

GCM Selection

The projected future climate depends on the Global Climate Model (GCM) used:

- Different parameterization of physical processes (e.g., clouds, precipitation)
- Varying sensitivity to changes in atmospheric forcing (e.g. CO2, aerosol concentrations)

Global mean air temperature by 10 GCMs identically forced with CO₂ increasing at 1%/year for 80 years

Future GHG Emissions

How society changes in the future:

"Scenarios" of greenhouse gas emissions:

A1fi: Rapid economic growth and introduction of new, efficient technologies, technology emphasizes fossil fuels – Highest estimate of IPCC

A2: Technological change and economic growth more fragmented, slower, higher population growth – Less high for 21st century

B1: Rapid change in economic structures toward service and information, with emphasis on clean, sustainable technology. Reduced material

intensity and improved social equity - Lowest

Scenarios of CO₂ emissions

Governor's Study selected 2 GCMs

GFDL 2.1 – Geophysical Fluid Dynamics Lab, resolution about 2.0 x 2.5 degrees (latitude x longitude)

PCM – National Center for Atmospheric Research/Dept. of Energy Parallel Climate Model, resolution about 2.8 degrees

Distinguishing Characteristics of both models:

- Both are Coupled Atmosphere-Ocean-Land models
- Neither uses flux adjustments: can simulate stable climate without adjustments
- Both are state-of-the-art
- Participating in IPCC AR4 simulations archived at PCMDI
- realistic simulation El Niño SST anomalies

GFDL is considered "Medium Sensitivity" PCM generally "Low Sensitivity"

GCM Selection

Using GCMs in Impact Studies

☐ The problems:

- GCM spatial scale incompatible with local/regional processes
 - roughly 2 5 degrees resolution
 - some important processes not captured
- GCMs have biases
- Resolved by:
 - -Bias Correction
 - -Spatial Downscaling

Bias Correction Effects

- ☐ Mean and variability of observed data are reproduced for historical period
- □ Temperature trends into future in GCM output are preserved
- □ Relative changes in mean and variance in future period GCM output are preserved, mapped onto observed variance

Spatial Disaggregation

GFDL - A2 Scenario

Assumes processes responsible for current precipitation pattern also apply to future precipitation

Results for CA – Annual Average

Annual P trend small, though impacts can be sensitive

T trend strongly influenced by GHG emission scenario and GCM

For PCM, A1fi scenario is 1-2 °C warmer than A2.

Temperature Changes, °C

	1961-90		B1		A2	
	DJF	JJA	DJF	JJA	DJF	JJA
GFDL	2.2	20.3	+2.2	+3.6	+3.5	+6.4
PCM			+1.9	+1.7	+2.6	+3.2

1961-1990

GFDL-B1

PCM-B1

GFDL-A2 PCM-A2

Precipitation Changes, mm/d

	1961-90		B1		A2	
	DJF	JJA	DJF	JJA	DJF	JJA
GFDL	2.3	0.4	-4.9%	-26.7%	-7.2%	-46.7%
PCM			+7.6%	+15.9%	+10.6	-6.8%

1961-1990

GFDL-B1

PCM-B1

GFDL-A2

PCM-A2

Derived data for impact modelers

Downscaled GCM climate and derived meteorology

- precipitation
- temperature
- humidity
- radiation

Hydrologic model simulations for specific river basins, have produced:

- streamflow
- •snowpack
- snowmelt timing
- soil moisture

